Phenotypic plasticity in number of glomeruli and sensory innervation of the antennal lobe in leaf-cutting ant workers (A. vollenweideri).
نویسندگان
چکیده
In the leaf-cutting ant Atta vollenweideri, the worker caste exhibits a pronounced size-polymorphism, and division of labor is dependent on worker size (alloethism). Behavior is largely guided by olfaction, and the olfactory system is highly developed. In a recent study, two different phenotypes of the antennal lobe of Atta vollenweideri workers were found: MG- and RG-phenotype (with/without a macroglomerulus). Here we ask whether the glomerular numbers are related to worker size. We found that the antennal lobes of small workers contain approximately 390 glomeruli (low-number; LN-phenotype), and in large workers we found a substantially higher number of approximately 440 glomeruli (high-number; HN-phenotype). All LN-phenotype workers and some small HN-phenotype workers do not possess an MG (LN-RG-phenotype and HN-RG-phenotype), and the remaining majority of HN-phenotype workers do possess an MG (HN-MG-phenotype). Using mass-staining of antennal olfactory receptor neurons we found that the sensory tracts divide the antennal lobe into six clusters of glomeruli (T1-T6). In LN-phenotype workers, approximately 50 glomeruli are missing in the T4-cluster. Selective staining of single sensilla and their associated receptor neurons revealed that T4-glomeruli are innervated by receptor neurons from the main type of olfactory sensilla, the Sensilla trichodea curvata. The other type of olfactory sensilla (Sensilla basiconica) exclusively innervates T6-glomeruli. Quantitative analyses of differently sized workers revealed that the volume of T6 glomeruli scales with the power of 2.54 to the number of Sensilla basiconica. The results suggest that developmental plasticity leading to antennal-lobe phenotypes promotes differences in olfactory-guided behavior and may underlie task specialization within ant colonies.
منابع مشابه
Distinct antennal lobe phenotypes in the leaf-cutting ant (Atta vollenweideri).
Leaf-cutting ants (Atta vollenweideri) express a remarkable size polymorphism across the two sexual castes (queens and males) but in particular within the worker caste. Worker size is related to behavior (alloethism), separating workers into behavioral subcastes. The neuronal mechanisms underlying differences in behavior within the worker caste are still unknown. In this study, we first compare...
متن کاملRepresentation of Thermal Information in the Antennal Lobe of Leaf-Cutting Ants
Insects are equipped with various types of antennal sensilla, which house thermosensitive neurons adapted to receive different parameters of the thermal environment for a variety of temperature-guided behaviors. In the leaf-cutting ant Atta vollenweideri, the physiology and the morphology of the thermosensitive sensillum coeloconicum (Sc) has been thoroughly investigated. However, the central p...
متن کاملA macroglomerulus in the antennal lobe of leaf-cutting ant workers and its possible functional significance.
Ants have a well-developed olfactory system, and pheromone communication is essential for regulating social life within their colonies. We compared the organization of primary olfactory centers (antennal lobes, ALs) in the brain of two closely related species of leaf-cutting ants (Atta vollenweideri, Atta sexdens). Both species express a striking size polymorphism associated with polyethism. We...
متن کاملCaste-Specific Expression Patterns of Immune Response and Chemosensory Related Genes in the Leaf-Cutting Ant, Atta vollenweideri
Leaf-cutting ants are evolutionary derived social insects with elaborated division of labor and tremendous colony sizes with millions of workers. Their social organization is mainly based on olfactory communication using different pheromones and is promoted by a pronounced size-polymorphism of workers that perform different tasks within the colony. The size polymorphism and associated behaviors...
متن کاملDensity of mushroom body synaptic complexes limits intraspecies brain miniaturization in highly polymorphic leaf-cutting ant workers
Hymenoptera possess voluminous mushroom bodies (MBs), brain centres associated with sensory integration, learning and memory. The mushroom body input region (calyx) is organized in distinct synaptic complexes (microglomeruli, MG) that can be quantified to analyse body size-related phenotypic plasticity of synaptic microcircuits in these small brains. Leaf-cutting ant workers (Atta vollenweideri...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Developmental neurobiology
دوره 70 4 شماره
صفحات -
تاریخ انتشار 2010